

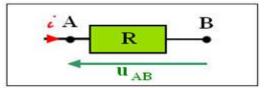
ACADEMIE DES ARTS RADITIONNELS

FONDATION DE LA MOSQUEE HASSAN II

Contrôle d'entrée à l'académie des arts traditionnels Epreuve de Physique (Durée 45 min)

NB: La rédaction de toutes les réponses doivent d'être reportées dans la feuille de réponse. L'épreuve est sur 30 points.

A. QCM (2 points réponse juste, 0 aucune réponse, -1 réponse fausse) -Choisir la bonne réponse


Partie I : ELECTRICITE (10 points)

1) La loi d'Ohm en convention récepteur, aux bornes du conducteur ohmique représenté sur le schéma ci-dessous, est donnée par la relation :

$$\mathbf{A:}\ U_{AB} = -R * I$$

$$\mathbf{B}:U_{AR}=R*I$$

$$C: U_{AR} = R * I^2$$

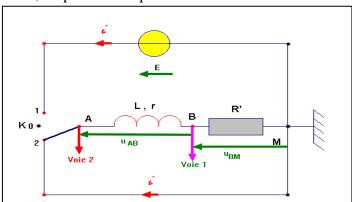

2) On réalise un circuit RC en plaçant en série un condensateur de capacité $C=1000~\mu F$ et un conducteur ohmique de résistance $R=3,40~k\Omega$. Le dipôle RC, ainsi réalisé, a pour impédance :

$$\mathbf{A}: \mathbf{Z} \approx 707 \ \Omega$$

$$\mathbf{B}: \mathbf{Z} \approx 70.7 \ \Omega$$

$$\mathbf{C}: \mathbf{Z} \approx 7071 \ \Omega$$

3) Une onde de période T = 10 ms se propage à la vitesse v = 250 m / s. Sa longueur d'onde λ vaut :

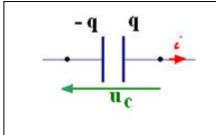

4) On considère le circuit électrique ci-dessous.

L'interrupteur étant en position 1, on le bascule sur la position 2 (voir figure) au temps t = 0 s. Avec l'orientation choisie, on peut écrire que :

$$\mathbf{A}: \quad \boldsymbol{U}_{AB} = L\frac{di}{dt} + ri$$

$$\mathbf{B:} \quad \boldsymbol{U}_{BM} = R'i$$

$$\mathbf{C}: \ U_{AB} = -L\frac{di}{dt} - ri$$



5) Soit un condensateur de capacité C. Dans le cas suivant, choisir la ou les relation(s)

$$\mathbf{A}: \frac{i = \frac{dq}{dt}}$$

$$\mathbf{B}: i = -\frac{dq}{dt}$$

$$\mathbf{C}: U_C = \frac{i}{C}$$

❖ Partie II : MECANIQUE (10 points)

6) La valeur de la vitesse d'un point matériel de masse m = 100 g est v = 36 km / h. La valeur de la quantité de mouvement est égale à cet instant à :

A: 3,6 kg .m/s

B: 1,0 x 103 kg .m/s

C: 1,0 kg .m /s

7) Une force est dite conservative, si:

A: Son travail est nul.

B: Son travail est moteur

C: Son travail est indépendant du chemin suivi.

8) Lorsqu'une onde progressive sinusoïdale rencontre un obstacle ou une ouverture dont la dimension est du même ordre de grandeur que la longueur d'onde, elle est

A: Dispersée

B: Réfléchie

C: Diffractée

9) Au démarrage, un scooter passe de 0 à 36 km/h en 10 s. Son accélération moyenne est de :**A :** 3.6 m/s²

B: 3.6 km/ h^2

 $C: 1,0 \text{ m/s}^2$

10) Une dépanneuse D tire une voiture V.

$$\mathbf{A} \colon \left\| \overrightarrow{F}_{D/V} \right\| \succ \left\| \overrightarrow{F}_{V/D} \right\|$$

$$\mathbf{B} \cdot \overrightarrow{F}_{D/V} = \overrightarrow{0}$$

$$\mathbf{c}: \overrightarrow{F}_{D/V} = \overrightarrow{F}_{V/D}$$

B. EXERCICE (10 points)

Un glaçon de masse m = 10 g glisse sur un plan incliné d'un angle α = 20 ° par rapport à l'horizontale.

Les frottements qui s'exercent sur le glaçon, ainsi que la poussée d'Archimède, sont négligeables par rapport aux autres forces.

- a)- Déterminer les caractéristiques du vecteur accélération du centre d'inertie G du glaçon le long du plan incliné.
- b)- Déterminer les valeurs des forces s'exerçant sur le glaçon